H.T.No. O.P.Code: 19EE0212 R19

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations June-2024 CONTROL SYSTEMS

(Common to EEE & ECE)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- a Compare open loop and closed loop control systems based on different **L4 CO1 8M** aspects.
 - b Distinguish between Block diagram Reduction Technique and Signal

L4 **CO1 4M**

CO₂

12M

Graph.

OR

Find the overall transfer function of the system whose signal flow graph 2 L1 CO₁ **12M** is shown below.

3 List out the time domain specifications and derive the expressions for L1 12M CO₂ Rise time, Peak time and Peak overshoot.

4 A positional control system with velocity feedback shown in figure. **L5** What is the response c(t) to the unit step input. Given that damping ratio=0.5.Also determine rise time, peak time, maximum overshoot and settling time.

UNIT-III

- 5 With the help of Routh's stability criterion find the stability of the L1 CO3 12M following systems represented by the characteristic equations.
 - (a) s4 + 8 s3 + 18 s2 + 16s + 5 = 0.
 - (b) 6 + 25 + 86 + 126 + 126 + 166 + 16 = 0.

OR

UNIT-IV

Explain the procedure for constructing root locus. 6

L2 CO₃ 12M

7 Derive the expressions for resonant peak and resonant frequency and hence establish the correlation between time response and frequency

L3 CO4 12M

response.

OR

a Define and derive the expression for resonant frequency. L1CO₄ **6M** b Given $\xi = 0.7$ and $\omega n = 10$ rad/sec. Find resonant peak, resonant

frequency and bandwidth.

L5 CO₄ **6M**

9		Determine the Solution for Homogeneous and Non homogeneous State	L5	CO5	12M
		equations.			
		OR			
10	a	Define state, state variable, state equation	L1	CO ₅	6M
		Derive the expression for the transfer function from the state model.	L3	CO5	6M
		•			
		X = Ax + Bu and $y = Cx + Du$			

*** END ***